

Monopolist maximization with quadratic costs

Problem Statement

Consider a monopolist who faces a linear market demand function given by:

$$P = a - bQ, \quad (1)$$

where P is the price, Q is the quantity produced, and a and b are positive constants. The monopolist has a quadratic cost function of the form:

$$C(Q) = cQ^2 + F, \quad (2)$$

where c is the constant marginal cost coefficient and F is the fixed cost. Find the profit-maximizing quantity, price, and the maximum profit for the monopolist.

Solution

Profit function

The monopolist's profit function is given by revenue minus cost:

$$\pi(Q) = PQ - C(Q) = (a - bQ)Q - (cQ^2 + F). \quad (3)$$

Optimal quantity

To find the profit-maximizing quantity, we differentiate the profit function with respect to Q and set the result to zero:

$$\frac{d\pi(Q)}{dQ} = a - 2bQ - 2cQ = 0. \quad (4)$$

Solving for the optimal quantity Q^* , we get:

$$Q^* = \frac{a}{2(b + c)}. \quad (5)$$

Optimal price

Substituting the optimal quantity Q^* back into the demand function, we can find the optimal price P^* :

$$P^* = a - bQ^* = a - b \left(\frac{a}{2(b + c)} \right). \quad (6)$$

Simplifying the expression, we get:

$$P^* = \frac{a(2b + 2c - b)}{2(b + c)} = \frac{a(b + c)}{b + c}. \quad (7)$$

Maximum profit

Finally, we substitute the optimal quantity Q^* and price P^* back into the profit function to find the maximum profit:

$$\pi^* = P^*Q^* - C(Q^*) = \frac{a(b + c)}{b + c} \left(\frac{a}{2(b + c)} \right) - \left(c \left(\frac{a}{2(b + c)} \right)^2 + F \right). \quad (8)$$

Simplifying the expression, we get:

$$\pi^* = \frac{a^2(b + c)}{4(b + c)^2} - \frac{a^2c}{4(b + c)^2} - F = \frac{a^2b}{4(b + c)^2} - F. \quad (9)$$

Thus, the profit-maximizing quantity for the monopolist is $Q^* = \frac{a}{2(b + c)}$, the optimal price is $P^* = \frac{a(b + c)}{b + c}$, and the maximum profit is $\pi^* = \frac{a^2b}{4(b + c)^2} - F$.

Thus, the profit-maximizing quantity for the monopolist is $Q^* = \frac{a}{2(b + c)}$, the optimal price is $P^* = \frac{a(b + c)}{b + c}$, and the maximum profit is $\pi^* = \frac{a^2b}{4(b + c)^2} - F$.